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A new route to multifunctionalised chiral cyclopentyl- and
cyclohexyl-amines was developed by means of a new
reaction involving the ring opening of a 2-azabicyclo-[2.2.1]
or -[2.2.2] structure in high yields.

Functionalised chiral cyclopentylamines are of extreme im-
portance in medicinal chemistry since this structural unit is
present in a large number of antibiotics. The most interesting are
amidomycin1 and aristeromycin,2 which have been shown to
have antiviral properties, and carbovir3 which is a promising
antibiotic used for the treatment of AIDS4 (Fig. 1).

We have previously reported our work on 2-azanorbornyl
derivatives and their use in various reactions, i.e. copper-
catalyzed allylic oxidation of olefins,5a ruthenium-catalyzed
transfer hydrogenation of ketones,5b diethylzinc addition to
both imines and aldehydes,5c borane reduction of ketones,5d

rearrangement of meso-epoxides5e and preparation of cyclo-
pentylglycine analogues.5f During research to modify the ligand
structure, an interesting reaction was discovered that opens up a
new, rapid route to substituted enantiomerically pure cyclo-
pentylamines via a ring opening reaction of the bicyclic
structure A [reaction (1)].

When attempting the preparation of the corresponding
Grignard reagent of the bicyclic bromide A, an unexpected ring
opening of the bicyclic structure occurred. Initially C was
formed with the concurrent formation of another compound
which was assigned to structure B. The 1 : 1 mixture of products
(B : C) was inseparable by flash chromatography, but the
compounds were assigned the structures displayed in reaction
(1) by analysis of the spectral data of the mixture.

Despite the low selectivity, the novelty and usefulness of the
ring opened product prompted us to optimize the conditions in
order to favour its formation. Better results were obtained when
the N-protecting PhEt group attached to the nitrogen in A was
replaced by tosyl to give the corresponding tosylate 3 (Scheme
1). The electron-withdrawing properties of this group facilitate
the ring opening reaction and the desired compound 4 was
obtained in high yield as a single product.

The synthetic route to the key intermediate 3 is outlined in
Scheme 1. Compound 1 was obtained via a diasteroselective
aza-Diels–Alder reaction between cyclopentadiene and the in
situ generated imine ion of ethyl glyoxylate and (S)-1-phenyl-
ethylamine,6,7 followed by simultaneous hydrogenation and
hydrogenolysis to the corresponding free amino ester.5c

N-Tosylation and subsequent LiAlH4 reduction of the ester
functionality led to the alcohol 2. The alcohol was then treated
with CBr4 and Ph3P in CH2Cl2 to afford the key intermediate 3.
When treated with magnesium and tetrahydrofuran at reflux, the
bicyclic bromide ring opened to give compound 4 via the
mechanism outlined in reaction (2). Acid hydrolysis of the
reaction mixture and purification of the crude residue by flash
chromatography furnished the desired ring opened product in
high yield.

This new methodology could also be extended to other
derivatives of the 2-azanorbornyl structure. Catalytic dihydrox-
ylation of the Diels–Alder adduct (used for the synthesis of 1)
with OsO4 in the presence of NMO as a co-oxidant in tert-butyl
alcohol at room temperature afforded diol 5 (Scheme 2).

Protection of diol 5 as the corresponding ketal was achieved
by treatment with 2,2-dimethoxypropane and toluene-p-
sulfonic acid in warm MeOH. Formation of product 6 required
the use of slightly more than one equivalent of the acid probably
due to protonation of the amine functionality, and under these
conditions the reaction was completed in ca. 15 minutes.
Solvent evaporation followed by addition of 20% aqueous
NaOH and extractive work-up afforded the pure protected diol
6. This product was treated with ammonium formate in EtOH at

Fig. 1 Some examples of pharmaceutically active cyclopentylamines.

Scheme 1 Reagents and conditions: (i) TsCl, Et3N, CH2Cl2 rt, overnight,
92%; (ii) LiAlH4, THF, rt, 2 h, 95%; (iii) CBr4, Ph3P, CH2Cl2, rt, 24 h, 60%;
(iv) Mg, BrCH2CH2Br, THF, reflux, 24 h, 90%.
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reflux in the presence of Pd/C (10%) to afford the corresponding
free amino ester, and then submitted to the same synthetic
sequence as described for 1 to yield the corresponding bromide
7. Compound 7 ring opened to give product 8 under the
conditions described for 3, albeit in a slightly slower reaction.

By simply using cyclohexa-1,3-diene in the aza-Diels–Alder
reaction, a bicyclic [2.2.2] structure was obtained.6 Dihydrox-
ylation of the purified adduct under the conditions described
earlier yielded compound 9 (Scheme 3) which, when submitted
to the same synthetic sequence as 5, yielded the ring opened
product 10.8 The yields for the transformation of 9 into 10 were
similar to those obtained in the transformation of 5 into 8.9

This work opens up a new route to cyclopentyl- and
cyclohexyl-amines via a novel ring opening reaction of [2.2.1]
and [2.2.2] azabicyclic structures. The fact that the [2.2.2]
structure ring opens without increased difficulty indicates that
the reaction is not only a consequence of ring strain on the
[2.2.1] system.
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Scheme 2 Reagents and conditions: (i) (MeO)2C(CH3)2, TsOH, warm
MeOH, 15 min, 87%; (ii) ammonium formate, Pd/C (10%), EtOH, reflux,
1 h, 99%; (iii) TsCl, Et3N, CH2Cl2, rt, overnight, 90%; (iv) LiAlH4, THF,
rt, 2 h, 92%; (v) CBr4, Ph3P, CH2Cl2, rt, 24 h, 59%; (vi) Mg, BrCH2CH2Br,
THF, reflux, 32 h, 89%.

Scheme 3 Reagents and conditions: (i) (MeO)2C(CH3)2, TsOH, warm
MeOH, 15 min, 87%; (ii) ammonium formate, Pd/C (10%), EtOH, reflux,
1 h, 99%; (iii) TsCl, Et3N, CH2Cl2, rt, overnight, 91%; (iv) LiAlH4, THF,
rt, 2 h, 94%; (v) CBr4, Ph3P, CH2Cl2, rt, 24 h, 62%; (vi) Mg, BrCH2CH2Br,
THF, reflux, 32 h, 85%.

598 Chem. Commun., 1999, 597–598


